Artificial Intelligence Resources
Tools & Resources
Artificial intelligence (AI) has become a widespread and prominent presence in nearly every field of human endeavor with a large amount of attention on health care. At the AAN, we recognize that AI has the potential to transform the practice of neurology from the bench to the bedside with appropriate awareness and cautions. We also recognize that AI is a broad term, encompassing many technologies, both new and established, some of which are already in use; and many of which are mostly potential without the reliability, trust, and accuracy required for patient-centered care.
We encourage members to learn more about AI. This page will be updated with resources, references, and commentary about AI relevant to neurology practice and which uphold our principles as an organization.
Artificial Intelligence Definition
Artificial intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems. In health care, AI refers to the application of advanced computational techniques, particularly machine learning and deep learning algorithms, to analyze complex medical data, generate insights to support clinical decision-making, streamline administrative processes, and support overall health care delivery.
Disclaimer about AI and Bias
While the intrigue of utilizing and implementing AI within clinical neurological practice appears promising, it is important to consider bias. When biased language, stereotypes, or discriminatory attitudes are either consciously or unconsciously imposed on the training data set of an AI tool, the model may generate biased outputs. Therefore, models should use diverse datasets and AI programming engineers should be from heterogeneous backgrounds with varying degrees of perspectives, cultures, sexes, races, and ethnicities.
Artificial Intelligence in Neurology Community
Get connected with AAN members to stay up to date on the latest AI discussions.
AI In Neurology
- | Annals of Clinical and Translational Neurology, May 2024
- | Neurology®, May 2024
- | Neurology Today®, February 2024
- | Neurology®, October 2023
- | Neurology®, October 2023
- | Neurology Today®, September 2023
- | Medical Journal Armed Forces India, July 2021
Artificial Intelligence on AAN's Online Learning Center
- C76 - Spanish: Artificial Intelligence
- AI on the Hill
- C151 - Artificial Intelligence (AI) and the Neurologist: New Horizons
- AI as a Tool in Academic Neurology: From Black Bags to Black Boxes
- AI Powered Automated EEG: Supervision Needed?
AAN Involvement
- AAN Participates in AMA’s | AMA, February 2024
Learn More about AI
- | IBM
- | March 2022 to present
- | December 2022 to present
- | JAMA, November 2023
- | NEJM, March 2023
- |Nature Medicine, January 2022
- | Journal of Health Organization and Management, December 2020
- | npj Digital Medicine, September 2020
- | European Journal of Radiology, May 2020
- | Healthcare Management Forum, January 2020
Neurology Publications
Find the latest artificial intelligence research, publications, and news.
AI in the News
AI Terms
Machine learning (ML)
A broad term for the processes by which computers “learn” from examples to draw conclusions or make decisions without being explicitly programmed to do so. Basic ML models take a given input and usually result in the same output. In health care, ML algorithms are trained on large datasets of medical records, images, and other health care data to recognize patterns and/or make predictions. These algorithms can assist in disease diagnosis, prognosis, treatment selection, and patient monitoring.
Learn more:
- | The Medical Futurist, January 2023
- | NEJM Evidence, April 2022
Deep learning
A form of machine learning that uses artificial neural networks with many layers to learn representations of data at multiple levels of abstraction. Each layer could be considered a “specialist” in one part of the problem. The neural network is how the layers are connected to each other, often in a hierarchy (subspecialists to specialists) to produce a final output. In health care, deep learning has shown remarkable success in tasks such as medical image analysis, natural language processing, and drug discovery.
Natural language processing (NLP)
A specific application of deep learning which enables computers to process and analyze text and spoken words. As a form of deep learning, NLP models require training on the nuances of language (e.g., accents, styles, language, domain expertise, context) to make an application effective and accurate in its task. Accuracy has been gradually increasing over decades of development and often commercially available in software.
Generative AI
A complex algorithm that can generate novel content (e.g., text or images) in response to prompts. Large language models (LLMs) are a widely used type of generative AI that utilize deep learning techniques and massive amounts of data to understand and generate human-like text across a wide range of topics and languages. In health care, LLMs may be used to analyze and interpret unstructured medical text data, such as electronic health records and clinical notes, to extract valuable insights for diagnosis, treatment planning, and medical research.
Learn more:
- | Healthcare Information and Management Systems Society (HIMSS), December 2023
- | HIMSS, November 2023
- | HIMSS, November 2023
- | HIMSS, August 2023
- | Coursera, July 2021
Clinical algorithms
A series of rules that process a set of input data and outputs a result. Predictive models use clinical algorithms as the engine to predict a clinical outcome, often a classification model (e.g., what diagnosis is most likely) or a number (e.g., percent likelihood of a no-show or length-of-stay). The range of actual technology used in clinical algorithms ranges from simple if-then statements or flowcharts (which may be considered AI when embedded in computers to assist in automating complex tasks) to complex deep learning models and large language models (which is currently often what is meant by AI).
Considerations for Generative AI Platforms/Large Language Models (LLM)
- Define the problem that generative AI/LLM will solve. Define how generative AI and large language models (LLM) can fit into the practice strategy. Recognize safe integration strategies with electronic health records (EHR), call management, chart review and documentation, assessment and care planning, and education. Here is additional information regarding the principles of AI models in medicine and neurology clinical care.
- Understand the limitations. Problems with generative AI/LLM can include hallucinations (fabricated erroneous facts) from datasets, factual mistakes, faulty logic, bias (ex. racial/ethnic biases), and memorization. Fully understanding the limitations can ensure safe execution of these models.
- Consider the barriers. Before implementation, consider the barriers to successful implementation within a clinical setting. These can include patient safety issues, data quality, data variability, data security, discrimination and bias, and ongoing model training. Learn more about the potential barriers to implementation.
- Review compliance. Before implementation of generative AI/LLM models within clinical practice, it is vital to review compliance with regulations such as HIPAA and GDPR. Collaboration with departmental/institutional leadership is foundational for success.
- Consider silent pilots. Prospectively measure accuracy and drift to ensure that generative AI models work sufficiently well and satisfy the institutional regulatory requirements. Consider re-training generative AI models to meet your institutional and regulatory needs based on collected data. Silent pilots have low risk and may help build experience and trust in an AI tool before implementation.